65 research outputs found

    Crack propagation in thin shells by explicit dynamics solid-shell models

    Get PDF
    A computational technique for the simulation of crack propagation due to cutting in thin structures is proposed. The implementation of elastoplastic solid-shell elements in an explicit framework is discussed. Finally, in the case of crack propagation, the issue of the selection of a propagation criterion is briefly discussed. Crack propagation is modelled making use of a so called “directional” cohesive approach

    Crack propagation in shells due to impact against sharp objects

    Get PDF
    The present paper is concerned with the development of an effective finite element tool for the simulation of crack propagation in thin structures, induced by contact or impact against sharp objects. In particular the purpose is the refinement and further development of a recently proposed finite element approach for the simulation of the blade cutting of thin membranes [1]. Standard cohesive interface elements are not suited for the simulation of this type of cutting, dominated by the blade sharpness and by large failure opening of the cohesive interface. The new concept of “directional” cohesive element, to be placed at the interface between adjacent shell elements, where the cohesive forces can have different directions on the two sides of the crack whenever the cohesive region is crossed by the cutting blade, was introduced in [1] for elastic 4-node full-integration shell elements with dissipation localized inside the interface elements, in the framework of an explicit dynamics formulation. In the present paper the computational efficiency of the proposed approach is investigated by considering applications to different test problems, modifying the shell element kinematics. Some considerations about a reduced integration solid-shell element are here reported; the interaction between this kind of element and directional cohesive elements is under study

    SOLID-SHELL FINITE ELEMENT MODELS FOR EXPLICIT SIMULATIONS OF CRACK PROPAGATION IN THIN STRUCTURES

    Get PDF
    Crack propagation in thin shell structures due to cutting is conveniently simulated using explicit finite element approaches, in view of the high nonlinearity of the problem. Solidshell elements are usually preferred for the discretization in the presence of complex material behavior and degradation phenomena such as delamination, since they allow for a correct representation of the thickness geometry. However, in solid-shell elements the small thickness leads to a very high maximum eigenfrequency, which imply very small stable time-steps. A new selective mass scaling technique is proposed to increase the time-step size without affecting accuracy. New ”directional” cohesive interface elements are used in conjunction with selective mass scaling to account for the interaction with a sharp blade in cutting processes of thin ductile shells

    Quotas have led to more women on corporate boards in Europe

    Get PDF
    But the effect on firm performance has been mixed across the different countries, write Simona Comi, Mara Grasseni, Federica Origo and Laura Pagan

    Cardiac Baroreflex, HRV, and Statistics: An Interdisciplinary Approach in Hypertension

    Get PDF
    Interests about the fine underpinnings of cardiovascular beat-by-beat variability have historical roots. Over the last decades, various aspects of the relationships between arterial pressure and heart period were taken as a proxy of the baroreflex in physiology and medicine, stimulating the interest of investigators in several interconnected scientific fields, in particular, bioengineering, neurophysiology, and clinical medicine. Studies of the overall system facilitated the emergence of a simplified negative (vagal) feedback model of the baroreflex and overshadowed the simultaneous interaction with excitatory, sympathetic positive-feedback mechanisms that would, however, better suit the model of a “paired antagonistic (parasympathetic/sympathetic) innervation of the internal organs.” From the bioengineering side, the simplicity of obtaining the series of subsequent RR intervals stimulated the analysis of beat-by-beat variations, providing a multitude of heart rate variability (HRV) indices considered as proxies of the underlying sympatho-vagal balance, and participating to the management of several important clinical conditions, such as hypertension. In this context, advanced statistical methods, used in an integrated manner and controlling for age and gender biases, might help shed new light on the relationship between cardiac baroreflex, assessed by the frequency domain index α, and the HRV indices with the varying of systolic arterial pressure (SAP) levels. The focus is also on a novel unitary Autonomic Nervous System Index (ANSI) built as a synthesis of HRV considering its three most informative proxies [RR, RR variance, and the rest-stand difference in the normalized power of low-frequency (LF) variability component]. Data from a relatively large set of healthy subjects (n = 1154) with a broad range of SAP [from normal (nNt = 778) to elevated (nHt = 232)] show that, e.g., α and ANSI significantly correlate overall (r = 0.523, p < 0.001), and that this correlation is lower in hypertensives (r = 0.444, p < 0.001) and higher in pre-hypertensives (r = 0.618, p < 0.001) than in normotensives (r = 0.5, p < 0.001). That suggests the existence of curvilinear “umbrella” patterns that might better describe the effects of the SAP states on the relationships between baroreflex and HRV. By a mix of robust, non-parametric and resampling statistical techniques, we give empirical support to this study hypothesis and show that the pre-hypertensive group results at the apex/bottom in most of the studied trends

    Deletion of autism risk gene Shank3 disrupts prefrontal connectivity

    Get PDF
    Mutations in the synaptic scaffolding protein Shank3 are a major cause of autism, and are associated with prominent intellectual and language deficits. However, the neural mechanisms whereby SHANK3 deficiency affects higher order socio-communicative functions remain unclear. Using high-resolution functional and structural MRI in adult male mice, here we show that loss of Shank3 (Shank3B-/-) results in disrupted local and long-range prefrontal and fronto-striatal functional connectivity. We document that prefrontal hypo-connectivity is associated with reduced short-range cortical projections density, and reduced gray matter volume. Finally, we show that prefrontal disconnectivity is predictive of social communication deficits, as assessed with ultrasound vocalization recordings. Collectively, our results reveal a critical role of SHANK3 in the development of prefrontal anatomy and function, and suggest that SHANK3 deficiency may predispose to intellectual disability and socio-communicative impairments via dysregulation of higher-order cortical connectivity

    The Making of the NEAM Tsunami Hazard Model 2018 (NEAMTHM18)

    Get PDF
    ABSTRACT: The NEAM Tsunami Hazard Model 2018 (NEAMTHM18) is a probabilistic hazard model for tsunamis generated by earthquakes. It covers the coastlines of the North-eastern Atlantic, the Mediterranean, and connected seas (NEAM). NEAMTHM18 was designed as a three-phase project. The first two phases were dedicated to the model development and hazard calculations, following a formalized decision-making process based on a multiple-expert protocol. The third phase was dedicated to documentation and dissemination. The hazard assessment workflow was structured in Steps and Levels. There are four Steps: Step-1) probabilistic earthquake model; Step-2) tsunami generation and modeling in deep water; Step-3) shoaling and inundation; Step-4) hazard aggregation and uncertainty quantification. Each Step includes a different number of Levels. Level-0 always describes the input data; the other Levels describe the intermediate results needed to proceed from one Step to another. Alternative datasets and models were considered in the implementation. The epistemic hazard uncertainty was quantified through an ensemble modeling technique accounting for alternative models' weights and yielding a distribution of hazard curves represented by the mean and various percentiles. Hazard curves were calculated at 2,343 Points of Interest (POI) distributed at an average spacing of ∼20 km. Precalculated probability maps for five maximum inundation heights (MIH) and hazard intensity maps for five average return periods (ARP) were produced from hazard curves. In the entire NEAM Region, MIHs of several meters are rare but not impossible. Considering a 2% probability of exceedance in 50 years (ARP≈2,475 years), the POIs with MIH >5 m are fewer than 1% and are all in the Mediterranean on Libya, Egypt, Cyprus, and Greece coasts. In the North-East Atlantic, POIs with MIH >3 m are on the coasts of Mauritania and Gulf of Cadiz. Overall, 30% of the POIs have MIH >1 m. NEAMTHM18 results and documentation are available through the TSUMAPS-NEAM project website (http://www.tsumaps-neam.eu/), featuring an interactive web mapper. Although the NEAMTHM18 cannot substitute in-depth analyses at local scales, it represents the first action to start local and more detailed hazard and risk assessments and contributes to designing evacuation maps for tsunami early warning

    Finite Element Simulations of Cutting Processes of Thin-Walled Structures

    No full text

    EXPLICIT DYNAMICS SIMULATIONS OF ELASTOPLASTIC AND BRITTLE FAILURE OF THIN SHELL STRUCTURES

    No full text
    Fracture propagation in elastoplastic shell structures, due to impact or cutting, is conveniently simulated using explicit finite element approaches, in view of the high nonlinearity of the problem. Solid-shell elements are usually preferred for the discretization in the presence of complex material behavior and degradation phenomena such as delamination, since they allow for a correct representation of the thickness geometry. Solid-shell elements require time consuming corrections to the element kinematics to avoid locking. Reduced integration with hourglass stabilization is used to reduce the computational cost. New "directional" cohesive interface elements are used to account for the interaction with a sharp blade in cutting problems. The element small thickness leads to very high eigenfrequencies, which imply very small stable time-steps. A new selective mass scaling technique is used to increase the time-step without affecting accuracy
    corecore